Probability and Random Processes ECS 315

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th
7 Random Variables

Office Hours:

BKD, 6th floor of Sirindhralai building
Wednesday 14:30-15:30
Friday 14:30-15:30

Chapter 5 vs. Chapter 7

- Chapter 5: Finding probability of an event Before the midterm, we studied how to find the probability of any event A by adding the probabilities of the outcomes inside A.
- Ex. When $A=\{a, b\}$, we can calculate the probability of A by

$$
P(A)=P(\{a, b\})=P(\{a\})+P(\{b\})
$$

- Chapter 7: Finding probability involving a random variable

Review: An example in Chapter 5

Example 5.7. A random experiment can result in one of the outcomes $\Omega^{\circ}\{a, b, c, d\}$ with probabilities (0.1) (0.3.) (1.5. and (0.1) respectively. Let A denote the event $\{a, b\}, B$ the event $\{b, c, d\}$, and C the event $\{d\}$.

[20.

$$
\begin{array}{cl}
\{a, b\}=\{a\} \cup\{b\} & \text { Finite } \\
\text { disjoint } & \downarrow
\end{array}
$$

- $P(A)=P(\{a, b\})=P(\{a\} \cup\{b\})=P(\{a\})+P(\{b\})=0.1+0.3=0.4$
- $P(B)=r(\{b, c, d\})=P(\{b\} \cup\{c\} \cup\{d\})=P(\{b\})+r(\{c\})+r(\{d\})=0.3+0.5+0.1$
- $P(C)=p(\{d\})=0.1$ (5.b)
- $P\left(A^{c}\right)=P(\{c, d\})=p(\{c\})+P(\{d\})=0.5+0.1=0.6$

Review: Steps we used in CH5

To find the probability of an event:

1. Identify the sample space Ω and the probability $P(\{\omega\})$ for each outcome ω.

2. Identify all the outcomes inside the event under consideration.

$$
P\left(A^{c}\right)=P(\{c, d\})=P(\{\{ \})+P(\{d\})=0.5+0.1=0.6
$$

3. Add the probability $P(\{\omega\})$ of the outcomes from the previous step.

Chapter 5 vs. Chapter 7

- Chapter 5: Steps to find the probability of an event

1. Identify the sample space Ω and the probability $P(\{\omega\})$ for each outcome ω.
2. Identify all the outcomes inside the event under consideration.
3. Add the probability $P(\{\omega\})$ of the outcomes from the previous step.

- Chapter 7: Steps to find probability involving RV ?

Chapter 7

- Crucial Skill 7.1: Find probability involving RV when the RV is defined as a function of outcomes

Steps to find probability involving RV

when the RV is defined as a
function of outcomes
Ex. $X(\omega)=\omega$
$Y(\omega)=(\omega-3)^{2}$
$Z(\omega)=\sqrt{Y(\omega)}$

Usually given as a statement about the RV

$$
\begin{aligned}
& \text { Ex. } X>3 \\
& X=3 \\
&|X|<2
\end{aligned}
$$

1. Identify the sample space Ω and the probability $P(\{\omega\})$ for each outcome ω.
2. Consider the given statement. Find the values of ω that make the RV satisfy the given statement.

- To do this, consider the statement, substitute the RV in the statement by its definition, and solve for ω.

3. Add the probability $P(\{\omega\})$ of the outcomes from the previous step.

Example

- Roll a fair dice. Let $\Omega=\{1,2,3,4,5,6\}$.
- Define $Y(\omega)=(\omega-3)^{2}$. Find $P[Y=4]$.
- Ω is given. The dice is fair; therefore and the probability $P(\{\omega\})=\frac{1}{6}$ for each outcome ω inside Ω.
Method 1:
The statement under consideration is " $Y=4$ ".
From $Y(\omega)=(\omega-3)^{2}, \quad Y(\omega)=4$ occurs when $\omega=1$ or 5.
Therefore, $P[Y=4]=P(\{1\})+P(\{5\})=\frac{2}{6}=\frac{1}{3}$

The connection between Chapter 5 and Chapter 7

- Probability involving RV is expressed in the form $P[$ some statement(s) about $X]$
- Technically, when we write [some statement(s) about X],
we are actually defining an event
$A=$ the event containing outcomes ω that make $X(\omega)$ satisfy the given statement
- Now that we have an event, we can apply the steps in Chapter 5 to find $P(A)$.

Example

- Roll a fair dice. Let $\Omega=\{1,2,3,4,5,6\}$.
- Define $Y(\omega)=(\omega-3)^{2}$. Find $P[Y=4]$.
- Ω is given. The dice is fair; therefore and the probability $P(\{\omega\})=\frac{1}{6}$ for each outcome ω inside Ω.

Method 1:

The statement under consideration is " $Y=4$ ".
From $Y(\omega)=(\omega-3)^{2}, \quad Y(\omega)=4$ occurs when $\omega=1$ or 5.
Therefore, $P[Y=4]=P(\{1\})+P(\{5\})=\frac{2}{6}=\frac{1}{3}$
Method 2:

$$
\begin{aligned}
{[Y=4] } & =\{\omega: Y(\omega)=4\}=\left\{\omega:(\omega-3)^{2}=4\right\}=\{1,5\} \\
P[Y=4] & =P([Y=4])=P(\{1,5\})=P(\{1\})+P(\{5\})=\frac{2}{6}=\frac{1}{3}
\end{aligned}
$$

Chapter 7

- Crucial Skill 7.1: Find probability involving RV when the RV is defined as a function of outcomes.
- Skill 7.2: Know the difference between X and X.
- Crucial Skill 7.3: Determine whether a set is a support of a RV.

